
NeoScrypt,

a Strong Memory Intensive Key Derivation Function

John Doering <ghostlander@phoenixcoin.org>

ABSTRACT. Hereby presented a new password based
memory intensive cryptographic solution designed for
general purpose computer hardware. A particular 32-bit
implementation is described and evaluated.

1. INTRODUCTION

Password based key derivation function (KDF) is a deterministic
algorithm used to derive a cryptographic key from an input datum
known as a password. An additional input datum known as a salt may
be employed in order to increase strength of the algorithm against
attacks using pre-computed hashes also known as rainbow tables. The
derived key length may be specified usually, and one of the most
popular uses of KDFs is key stretching. It increases effective length of
a user password by constructing an enhanced key to provide with a
better resistance against brute force attacks. Another popular use is
password storage. Keeping user passwords in unencrypted form is
very undesired as it may be possible for an attacker to gain access to
the password file and retrieve the passwords stored immediately.
Brute force attacks may be the only possible approach against strong
KDFs. This kind of attack can be parallelised usually to a great extent.
High requirements on computational resources such as processor time
and memory space allow to reduce parallelisation efficiency and keep
these attacks expensive far beyond reasonable limits.

As the name suggests, NeoScrypt is a further development of Scrypt
as described in Percival [1]. It is aimed at increased security and
better performance on general purpose computer hardware while
maintaining comparable costs and requirements. This document
focuses on functional differences between NeoScrypt and Scrypt.

v1
26-Jul-2014

2. SCRYPT SPECIFICATIONS

The most popular implementation of Scrypt employed by many
cryptocurrencies since 2011 is N = 1024, r = 1, p = 1 abbreviated
usually to (1024, 1, 1). N is the primary parameter defining number
of memory segments used and must be a power of 2. May be also
described through Nfactor.

N = (1 << (Nfactor + 1))

Nfactor = lb(N) - 1

The default memory segment size for the 32-bit implementation is 128
bytes. r is the segment size multiplier. p is the computational
multiplier. They may be also described through rfactor and pfactor
respectively.

r = (1 << rfactor)
p = (1 << pfactor)

A single instance of Scrypt utilises (N + 2) * r * 128 bytes of memory
space, i.e. 128.25Kb for the (1024, 1, 1) configuration. Actual data
mixing in memory is performed by Salsa20, a stream cipher
introduced by Bernstein [2]. A reduced strength 8-round
implementation has been chosen (Salsa20/8). Every run of the Scrypt
core engine executes it 4 * r * N times, i.e. 4096 times for the (1024,
1, 1) configuration. Every execution of Salsa20 mixes one half of a
memory segment with itself.

The Scrypt core engine has no provisions for key stretching or
compressing as well as salting, therefore additional cryptographic
functions need to be deployed. In case of cryptocurrencies, a typical
configuration operates with 80 bytes of input data (block header)
which is also a salt. It is passed to PBKDF2, a password based KDF [3]
capable of deriving variable length keys with salting. It works with
SHA-256, a cryptographic hash function delivering digests up to 32
bytes in size through 64 internal rounds. It doesn’t support keyed
hashing, therefore a pseudorandom function (PRF) such as HMAC [4]
is required, and the whole big endian construction may be called
PBKDF2-HMAC-SHA256. It feeds r * 128 bytes of derived data to the
Scrypt core and receives it back after mixing to be used as a salt for
another PBKDF2-HMAC-SHA256 run which compresses 80 bytes of
input data into 32 bytes of hash.

v1
26-Jul-2014

3. NEOSCRYPT SPECIFICATIONS

Although a very innovative design back in time, Scrypt has developed
certain vulnerabilities. The first announced differential cryptanalysis
of Salsa20/8 by Tsunoo et al. [5] in 2007 did not deliver any advantage
over 256-bit brute force attack, but the following research by
Aumasson et al. [6] reduced time complexity to break it from 2255 to
2251 with 50% success probability. It was improved by Shi et. al [7] in
2012 to 2250. Although this is not critical yet, better attacks on
Salsa20/8 may be developed in the future.

PBKDF2 is a very popular KDF and may be configured to require
considerably large amounts of processor time, but it does not require
complex logic or significant amounts of memory to operate. Therefore
brute force attacks can be carried out on general purpose hardware
such as GPUs or custom designs (ASICs) with reasonably low costs.
SHA-256 also allows numerous performance optimisations in this
context. It is also worth to mention that Scrypt relies very little on
PBKDF2-HMAC-SHA256 strength as it is configured to run in the
fastest 1-iteration mode even though 1000-iteration minimum advised
in general [3].

NeoScrypt addresses these issues. The core engine is configured to
employ non-reduced Salsa20 of 20 rounds (Salsa20/20) as well as
non-reduced ChaCha20 of 20 rounds (ChaCha20/20) [8]. Both of them
are used to produce the final salt as their outputs are XOR’ed into it.
They may be configured to run either in series or parallel depending
on application objectives. The default NeoScrypt configuration is (128,
2, 1). A single instance of NeoScrypt utilises (N + 3) * r * 128 bytes of
memory space, i.e. 32.75Kb, in series mode or (2 * N + 3) * r * 128
bytes, i.e. 64.75Kb, in parallel mode. Every run of the NeoScrypt core
engine executes Salsa20/20 and ChaCha20/20 1024 times each which
might seem inferior to 4096 times of Salsa20/8 of the Scrypt core
engine. However NeoScrypt operates with double the memory
segment size requiring larger temporal buffers, also with higher
round count of each stream cipher iteration as explained above. If
approximated to abstract load/store units, NeoScrypt is 1.25 times
more memory intensive than Scrypt.

There are no known successful attacks on non-reduced Salsa20 and
ChaCha20 other than exhaustive brute force search.

NeoScrypt replaces SHA-256 with BLAKE2s [9] which is a further
development of BLAKE-256 [10], one of 5 NIST SHA-3 contest
finalists. Based upon ChaCha20 , operates with a lower round count of

v1
26-Jul-2014

10, supports keyed hashing, is native little endian and faster
significantly than SHA-256 and even BLAKE-256. It could be
interfaced directly to PBKDF2 with no need of HMAC. However
PBKDF2 constructs derived keys using blocks. It means a minor
change in an input datum, such as nonce increment, may not result in
an entirely different derived key. A replacement KDF has been
developed to address this issue.

FastKDF is a buffered password based KDF which also supports
salting. It operates with 2 primary buffers for password and salt each.
They must be a power of 2 in size and not less than any input
(password, salt) or output (derived key) data. The default
configuration works with 256-byte buffers. Password and salt are
loaded initially into these buffers in a repetitive manner until the end
of buffer is reached. The salt buffer is modified through operations
while the password buffer remains constant. The buffer pointers are
set to zero (start) on the first run. When a PRF chosen delivers a
digest, a sum of all its bytes modulo buffer size defines the next buffer
pointer. The digest is XOR’ed into the salt buffer at the new buffer
pointer and the next iteration starts. If a read or write operation goes
past a buffer end, it is continued from the buffer start. BLAKE2s is
configured to operate with 64-byte input (password), 32-byte key (salt)
and 32-byte output (digest). When the final FastKDF iteration is
completed, the password buffer using zero buffer pointer is XOR’ed
into the salt buffer using the last buffer pointer to produce the derived
key of length required which is copied into the output buffer.
FastKDF-BLAKE2s is configured to run through 32 iterations by
default. It is little endian for easier deployment and additional minor
performance advantage on popular general purpose computer
hardware.

4. CONCLUSIONS

The primary functionality of NeoScrypt and Scrypt has been described
and evaluated briefly without much mathematical detail to a
cryptography amateur. Certain disadvantages of Scrypt have been
outlined. Please refer to the source code and the original Scrypt
documentation [1] for additional information should you need any.

v1
26-Jul-2014

REFERENCES

1. Colin Percival. Stronger Key Derivation via Sequential
Memory-Hard Functions, May 2009

2. Daniel J. Bernstein. The Salsa20 family of stream ciphers,
December 2007

3. IETF RFC 2898. PKCS #5: Password-based Cryptography
Specification Version 2.0, September 2000

4. FIPS 198-1. The Keyed-Hash Message Authentication Code
(HMAC), July 2008

5. Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki
and Hiroki Nakashima. Differential Cryptanalysis of Salsa20/8,
January 2007

6. Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi
Meier and Christian Rechberger. New Features of Latin Dances:
Analysis of Salsa, ChaCha, and Rumba, December of 2007

7. Zhenqing Shi, Bin Zhang, Dengguo Feng and Wenling Wu.
Improved Key Recovery Attacks on Reduced-Round Salsa20 and
ChaCha, November 2012

8. Daniel J. Bernstein. ChaCha, a variant of Salsa20, January 2008

9. Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O'Hearn and
Christian Winnerlein. BLAKE2: simpler, smaller, fast as MD5, January
2013.

10. Jean-Philippe Aumasson, Luca Henzen, Willi Meier and Raphael
C.-W. Phan. SHA-3 proposal BLAKE. Submission to NIST (Round 1/2),
2008.

v1
26-Jul-2014

